If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-116=0
a = 1; b = 4; c = -116;
Δ = b2-4ac
Δ = 42-4·1·(-116)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{30}}{2*1}=\frac{-4-4\sqrt{30}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{30}}{2*1}=\frac{-4+4\sqrt{30}}{2} $
| 2x2-20x+32=0 | | -1/4-5p=7 | | 4p+23=-13 | | -5x-9=5-7x | | 2z–24=z+14 | | 180=39b+30+12b+48 | | 2w+54=w+57 | | 6/7=1/7+5/2r | | 17x-3=15x+5 | | 2y=3y-68 | | 3y-1.2=1.2+3y | | f+.2=-3 | | 5-0.3k=-0.3k+5 | | 16v-12=180 | | 7c-85=c+23 | | 4p-1.3=1.3+4p | | 1/x=4.96 | | -69=7v | | 4q+1=3(q-5) | | 4q+1=3(q-5 | | 3y-1/3=1 | | 14a=18 | | 2a-84=a-5 | | 2(p-5)=2p-10 | | 2x-1/5=8 | | 27-6p=15-5p | | 5h+5=4(h-3) | | -2(3p+2)-4(3-p)=3(2p+2)-4 | | -4s+3(2s+2)=3(4s-1)-21 | | 17^(x-4)=18^(6x) | | 4v-1-5v=-6 | | 5+4h=33 |